Massively Parallel Adaptive Collapsing of Edges for Unstructured Tetrahedral Meshes
Abstract
Many tasks in computer graphics and engineering involve unstructured tetrahedral meshes. Numerical methods such as the finite element method (FEM) oftentimes use tetrahedral meshes to compute a solution for complex problems such as physicallybased simulation or shape deformation. As each tetrahedron costs computationally, coarsening tetrahedral meshes typically reduces the overhead of numerical methods, which is attractive for interactive applications. In order to enable reduction of the tetrahedron count, we present a quick adaptive coarsening method for unstructured tetrahedral meshes. Our method collapses edges using the massively parallel processing power of present day graphics processing units (GPU)s to achieve run times of up to one order of magnitude faster than sequential collapsing. For efficient exploitation of parallel processing power, we contribute a quick method for finding a compact set of conflict-free sub-meshes, which results in up to 59% fewer parallel collapsing iterations compared to the state of the art massively parallel conflict detection.
BibTeX
@inproceedings {10.2312:hpg.20231139,
booktitle = {High-Performance Graphics - Symposium Papers},
editor = {Bikker, Jacco and Gribble, Christiaan},
title = {{Massively Parallel Adaptive Collapsing of Edges for Unstructured Tetrahedral Meshes}},
author = {Ströter, Daniel and Stork, André and Fellner, Dieter W.},
year = {2023},
publisher = {The Eurographics Association},
ISSN = {2079-8687},
ISBN = {978-3-03868-229-5},
DOI = {10.2312/hpg.20231139}
}
booktitle = {High-Performance Graphics - Symposium Papers},
editor = {Bikker, Jacco and Gribble, Christiaan},
title = {{Massively Parallel Adaptive Collapsing of Edges for Unstructured Tetrahedral Meshes}},
author = {Ströter, Daniel and Stork, André and Fellner, Dieter W.},
year = {2023},
publisher = {The Eurographics Association},
ISSN = {2079-8687},
ISBN = {978-3-03868-229-5},
DOI = {10.2312/hpg.20231139}
}
Except where otherwise noted, this item's license is described as Attribution 4.0 International License
Related items
Showing items related by title, author, creator and subject.
-
Rational Bézier Guarding
Khanteimouri, Payam; Mandad, Manish; Campen, Marcel (The Eurographics Association and John Wiley & Sons Ltd., 2022)We present a reliable method to generate planar meshes of nonlinear rational triangular elements. The elements are guaranteed to be valid, i.e. defined by injective rational functions. The mesh is guaranteed to conform ... -
VA + Embeddings STAR: A State-of-the-Art Report on the Use of Embeddings in Visual Analytics
Huang, Zeyang; Witschard, Daniel; Kucher, Kostiantyn; Kerren, Andreas (The Eurographics Association and John Wiley & Sons Ltd., 2023)Over the past years, an increasing number of publications in information visualization, especially within the field of visual analytics, have mentioned the term ''embedding'' when describing the computational approach. ... -
Teaching Game Programming in an Upper-level Computing Course Through the Development of a C++ Framework and Middleware
Hooper, Steffan; Wünsche, Burkhard C.; Denny, Paul; Luxton-Reilly, Andrew (The Eurographics Association, 2024)The game development industry has a programming skills shortage, with industry surveys often ranking game programming as the top skill-in-demand across small, mid-sized, and large triple-A (AAA) game studios. C++ programming ...