Show simple item record

dc.contributor.authorHerholz, Sebastianen_US
dc.contributor.authorElek, Oskaren_US
dc.contributor.authorSchindel, Jensen_US
dc.contributor.authorKřivánek, Jaroslaven_US
dc.contributor.authorLensch, Hendrik P. A.en_US
dc.contributor.editorJakob, Wenzel and Hachisuka, Toshiyaen_US
dc.date.accessioned2018-07-01T07:32:46Z
dc.date.available2018-07-01T07:32:46Z
dc.date.issued2018
dc.identifier.isbn978-3-03868-068-0
dc.identifier.issn1727-3463
dc.identifier.urihttps://doi.org/10.2312/sre.20181171
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/sre20181171
dc.description.abstractVirtually all existing analytic BRDF models are built from multiple functional components (e.g., Fresnel term, normal distribution function, etc.). This makes accurate importance sampling of the full model challenging, and so current solutions only cover a subset of the model's components. This leads to sub-optimal or even invalid proposed directional samples, which can negatively impact the efficiency of light transport solvers based on Monte Carlo integration. To overcome this problem, we propose a unified BRDF sampling strategy based on parametric mixture models (PMMs). We show that for a given BRDF, the parameters of the associated PMM can be defined in smooth manifold spaces, which can be compactly represented using multivariate B-Splines. These manifolds are defined in the parameter space of the BRDF and allow for arbitrary, continuous queries of the PMM representation for varying BRDF parameters, which further enables importance sampling for spatially varying BRDFs. Our representation is not limited to analytic BRDF models, but can also be used for sampling measured BRDF data. The resulting manifold framework enables accurate and efficient BRDF importance sampling with very small approximation errors.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.7 [Computer Graphics]
dc.subjectThree Dimensional Graphics and Realism
dc.subjectBSDF
dc.subjectImportance Sampling
dc.subjectProduct Importance Sampling
dc.subjectGlobal Illumination
dc.subjectMonte
dc.subjectCarlo Sampling
dc.titleA Unified Manifold Framework for Efficient BRDF Sampling based on Parametric Mixture Modelsen_US
dc.description.seriesinformationEurographics Symposium on Rendering - Experimental Ideas & Implementations
dc.description.sectionheadersRendering Techniques I
dc.identifier.doi10.2312/sre.20181171
dc.identifier.pages41-52


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record