Show simple item record

dc.contributor.authorScherfgen, Daviden_US
dc.contributor.authorSchild, Jonasen_US
dc.contributor.editorMaiero, Jens and Weier, Martin and Zielasko, Danielen_US
dc.date.accessioned2021-09-07T13:40:07Z
dc.date.available2021-09-07T13:40:07Z
dc.date.issued2021
dc.identifier.isbn978-3-03868-159-5
dc.identifier.issn1727-530X
dc.identifier.urihttps://doi.org/10.2312/egve.20211334
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egve20211334
dc.description.abstractVirtual medical emergency training provides complex while safe interactions with virtual patients. Haptically integrating a medical manikin into virtual training has the potential to improve the interaction with a virtual patient and the training experience. We present a system that estimates the 3D pose of a medical manikin in order to haptically augment a human model in a virtual reality training environment, allowing users to physically touch a virtual patient. The system uses an existing convolutional neural network-based (CNN) body keypoint detector to locate relevant 2D keypoints of the manikin in the images of the stereo camera built into a head-mounted display. The manikin's position, orientation and joint angles are found by non-linear optimization. A preliminary analysis reports an error of 4.3 cm. The system is not yet capable of real-time processing.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectHuman centered computing
dc.subjectMixed / augmented reality
dc.subjectVirtual reality
dc.titleEstimating the Pose of a Medical Manikin for Haptic Augmentation of a Virtual Patient in Mixed Reality Trainingen_US
dc.description.seriesinformationICAT-EGVE 2021 - International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments - Posters and Demos
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/egve.20211334
dc.identifier.pages3-4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record