Show simple item record

dc.contributor.authorLee, Jeongminen_US
dc.contributor.authorKwon, Taesooen_US
dc.contributor.authorShin, Hyunjuen_US
dc.contributor.authorLee, Yoonsangen_US
dc.contributor.editorHu, Ruizhenen_US
dc.contributor.editorCharalambous, Panayiotisen_US
dc.date.accessioned2024-04-16T15:39:01Z
dc.date.available2024-04-16T15:39:01Z
dc.date.issued2024
dc.identifier.isbn978-3-03868-237-0
dc.identifier.issn1017-4656
dc.identifier.urihttps://doi.org/10.2312/egs.20241020
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egs20241020
dc.description.abstractWe present an approach using deep reinforcement learning (DRL) to directly generate motion matching queries for longterm tasks, particularly targeting the reaching of specific locations. By integrating motion matching and DRL, our method demonstrates the rapid learning of policies for target location tasks within minutes on a standard desktop, employing a simple reward design. Additionally, we propose a unique hit reward and obstacle curriculum scheme to enhance policy learning in environments with moving obstacles.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Motion processing; Motion path planning
dc.subjectComputing methodologies → Motion processing
dc.subjectMotion path planning
dc.titleUtilizing Motion Matching with Deep Reinforcement Learning for Target Location Tasksen_US
dc.description.seriesinformationEurographics 2024 - Short Papers
dc.description.sectionheadersAnimation
dc.identifier.doi10.2312/egs.20241020
dc.identifier.pages4 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License