Deformation Styles for Spline-based Skeletal Animation
View/ Open
Date
2007Author
Forstmann, Sven
Ohya, Jun
Krohn-Grimberghe, Artus
McDougall, Ryan
Metadata
Show full item recordAbstract
We present a novel skinned skeletal animation system based on spline-aligned deformations for providing high quality and fully designable deformations in real-time. Our ambition is to allow artists the easy creation of abstract, pose-dependent deformation behaviors that might directly be assigned to a large variety of target objects simultaneously. To achieve this goal, we introduce the usage of deformation styles and demonstrate their applicability by our animation system. We therefore enhance spline-skinned skeletal animation with two sweep-based free-form-deformation (FFD) variants. The two FFD variants are pose-dependent, driven by three textures and three curves, which can be designed by the artist. As the three textures are similar to height-maps, their creation is very intuitive. Once designed, the deformation styles can be directly applied to any number of targets for imitating material behaviors of cloth, metal or even muscles. Our GPU based implementation shows promising results for real-time usage, as about 30 Million vertices per second can be animated. The basic spline-skinning even reaches more than twice the speed and gets close to the performance of skeletal subspace deformation (SSD). Furthermore, our method can easily be combined along with other existing deformation techniques as pose space deformation or SSD.
BibTeX
@inproceedings {10.2312:SCA:SCA07:141-150,
booktitle = {Eurographics/SIGGRAPH Symposium on Computer Animation},
editor = {Dimitris Metaxas and Jovan Popovic},
title = {{Deformation Styles for Spline-based Skeletal Animation}},
author = {Forstmann, Sven and Ohya, Jun and Krohn-Grimberghe, Artus and McDougall, Ryan},
year = {2007},
publisher = {The Eurographics Association},
ISSN = {1727-5288},
ISBN = {978-3-905673-44-9},
DOI = {10.2312/SCA/SCA07/141-150}
}
booktitle = {Eurographics/SIGGRAPH Symposium on Computer Animation},
editor = {Dimitris Metaxas and Jovan Popovic},
title = {{Deformation Styles for Spline-based Skeletal Animation}},
author = {Forstmann, Sven and Ohya, Jun and Krohn-Grimberghe, Artus and McDougall, Ryan},
year = {2007},
publisher = {The Eurographics Association},
ISSN = {1727-5288},
ISBN = {978-3-905673-44-9},
DOI = {10.2312/SCA/SCA07/141-150}
}
Related items
Showing items related by title, author, creator and subject.
-
Rational Bézier Guarding
Khanteimouri, Payam; Mandad, Manish; Campen, Marcel (The Eurographics Association and John Wiley & Sons Ltd., 2022)We present a reliable method to generate planar meshes of nonlinear rational triangular elements. The elements are guaranteed to be valid, i.e. defined by injective rational functions. The mesh is guaranteed to conform ... -
VA + Embeddings STAR: A State-of-the-Art Report on the Use of Embeddings in Visual Analytics
Huang, Zeyang; Witschard, Daniel; Kucher, Kostiantyn; Kerren, Andreas (The Eurographics Association and John Wiley & Sons Ltd., 2023)Over the past years, an increasing number of publications in information visualization, especially within the field of visual analytics, have mentioned the term ''embedding'' when describing the computational approach. ... -
Teaching Game Programming in an Upper-level Computing Course Through the Development of a C++ Framework and Middleware
Hooper, Steffan; Wünsche, Burkhard C.; Denny, Paul; Luxton-Reilly, Andrew (The Eurographics Association, 2024)The game development industry has a programming skills shortage, with industry surveys often ranking game programming as the top skill-in-demand across small, mid-sized, and large triple-A (AAA) game studios. C++ programming ...