Show simple item record

dc.contributor.authorGo, Jareden_US
dc.contributor.authorVu, Thucen_US
dc.contributor.authorKuffner, Jamesen_US
dc.contributor.editorR. Boulic and D. K. Paien_US
dc.date.accessioned2014-01-29T07:08:30Z
dc.date.available2014-01-29T07:08:30Z
dc.date.issued2004en_US
dc.identifier.isbn3-905673-14-2en_US
dc.identifier.issn1727-5288en_US
dc.identifier.urihttp://dx.doi.org/10.2312/SCA/SCA04/009-018en_US
dc.description.abstractWe present a method for synthesizing animations of autonomous space, water, and land-based vehicles in games or other interactive simulations. Controlling the motion of such vehicles to achieve a desirable behavior is difficult due to the constraints imposed by the system dynamics. We combine real-time path planning and a simplified physics model to automatically compute control actions to drive a vehicle from an input state to desirable output states based on a behavior cost function. Both offline trajectory preprocessing and online search are used to build an animation framework suitable for interactive vehicle simulations. We demonstrate synthesized animations of spacecraft performing a variety of autonomous behaviors, including Seek, Pursue, Avoid, Avoid Collision, and Flee. We also explore several enhancements to the basic planning algorithm and examine the resulting tradeoffs in runtime performance and quality of the generated motion.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleAutonomous Behaviors for Interactive Vehicle Animationsen_US
dc.description.seriesinformationSymposium on Computer Animationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record