Accelerating Polygon Clipping
Abstract
Polygon clipping is a central part of image generation and image visualization systems.In spite of its algorithmic simplicity it consumes a considerable amount of hardware or software resources. Polygon clipping performance is dominated by two processes: intersection calculations and data transfers. The paper analyzes the prevalent Sutherland-Hodgman algorithm for polygon clippingand identifies cases for which this algorithm performs inefficiently. Such casesare characterized by subsequent vertices in the input polygon that share a commonregion, e. g. a common halfspace.The paper will present new techniques that detect such constellations and simplifythe input polygon such that the Sutherland-Hodgman algorithm runs more efficiently. Block diagrams and pseudo-code demonstrate that the new techniques are well suited for both hardware and software implementations. Finally, the paper discusses the results of a prototype implementation of the presented techniques. The analysis compares the performance of the new techniquesto the traditional Sutherland-Hodgman algorithm for different test scenes. The new techniques reduce the number data transfers by up to 90 % and the number of intersection calculations by up to 60 %.
BibTeX
@inproceedings {10.2312:EGGH:EGGH92:024-043,
booktitle = {Eurographics Workshop on Graphics Hardware},
editor = {P F Lister},
title = {{Accelerating Polygon Clipping}},
author = {Schneider, Bengt-Olaf},
year = {1992},
publisher = {The Eurographics Association},
ISSN = {-},
ISBN = {-},
DOI = {10.2312/EGGH/EGGH92/024-043}
}
booktitle = {Eurographics Workshop on Graphics Hardware},
editor = {P F Lister},
title = {{Accelerating Polygon Clipping}},
author = {Schneider, Bengt-Olaf},
year = {1992},
publisher = {The Eurographics Association},
ISSN = {-},
ISBN = {-},
DOI = {10.2312/EGGH/EGGH92/024-043}
}