Fast High-Dimensional Filtering Using the Permutohedral Lattice
Abstract
Many useful algorithms for processing images and geometry fall under the general framework of high-dimensional Gaussian filtering. This family of algorithms includes bilateral filtering and non-local means. We propose a new way to perform such filters using the permutohedral lattice, which tessellates high-dimensional space with uniform simplices. Our algorithm is the first implementation of a high-dimensional Gaussian filter that is both linear in input size and polynomial in dimensionality. Furthermore it is parameter-free, apart from the filter size, and achieves a consistently high accuracy relative to ground truth (> 45 dB). We use this to demonstrate a number of interactive-rate applications of filters in as high as eight dimensions.
BibTeX
@article {10.1111:j.1467-8659.2009.01645.x,
journal = {Computer Graphics Forum},
title = {{Fast High-Dimensional Filtering Using the Permutohedral Lattice}},
author = {Adams, Andrew and Baek, Jongmin and Davis, Myers Abraham},
year = {2010},
publisher = {The Eurographics Association and Blackwell Publishing Ltd},
ISSN = {1467-8659},
DOI = {10.1111/j.1467-8659.2009.01645.x}
}
journal = {Computer Graphics Forum},
title = {{Fast High-Dimensional Filtering Using the Permutohedral Lattice}},
author = {Adams, Andrew and Baek, Jongmin and Davis, Myers Abraham},
year = {2010},
publisher = {The Eurographics Association and Blackwell Publishing Ltd},
ISSN = {1467-8659},
DOI = {10.1111/j.1467-8659.2009.01645.x}
}