Show simple item record

dc.contributor.authorWinkler, T.en_US
dc.contributor.authorDrieseberg, J.en_US
dc.contributor.authorAlexa, M.en_US
dc.contributor.authorHormann, K.en_US
dc.date.accessioned2015-02-23T16:40:00Z
dc.date.available2015-02-23T16:40:00Z
dc.date.issued2010en_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttp://dx.doi.org/10.1111/j.1467-8659.2009.01600.xen_US
dc.description.abstractInterpolating vertex positions among triangle meshes with identical vertex-edge graphs is a fundamental part of many geometric modelling systems. Linear vertex interpolation is robust but fails to preserve local shape. Most recent approaches identify local affine transformations for parts of the mesh, model desired interpolations of the affine transformations, and then optimize vertex positions to conform with the desired transformations. However, the local interpolation of the rotational part is non-trivial for more than two input configurations and ambiguous if the meshes are deformed significantly. We propose a solution to the vertex interpolation problem that starts from interpolating the local metric (edge lengths) and mean curvature (dihedral angles) and makes consistent choices of local affine transformations using shape matching applied to successively larger parts of the mesh. The local interpolation can be applied to any number of input vertex configurations and due to the hierarchical scheme for generating consolidated vertex positions, the approach is fast and can be applied to very large meshes.en_US
dc.publisherThe Eurographics Association and Blackwell Publishing Ltden_US
dc.titleMulti-Scale Geometry Interpolationen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume29en_US
dc.description.number2en_US
dc.identifier.doi10.1111/j.1467-8659.2009.01600.xen_US
dc.identifier.pages309-318en_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record