Show simple item record

dc.contributor.authorChentanez, Nuttapongen_US
dc.contributor.authorJeschke, Stefanen_US
dc.contributor.authorMüller, Matthiasen_US
dc.contributor.authorMacklin, Milesen_US
dc.contributor.editorDominik L. Michelsen_US
dc.contributor.editorSoeren Pirken_US
dc.date.accessioned2022-08-10T15:20:01Z
dc.date.available2022-08-10T15:20:01Z
dc.date.issued2022
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14643
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14643
dc.description.abstractWe propose a hierarchical graph for learning physics and a novel way to handle obstacles. The finest level of the graph consist of the particles itself. Coarser levels consist of the cells of sparse grids with successively doubling cell sizes covering the volume occupied by the particles. The hierarchical structure allows for the information to propagate at great distance in a single message passing iteration. The novel obstacle handling allows the simulation to be obstacle aware without the need for ghost particles. We train the network to predict effective acceleration produced by multiple sub-steps of 3D multi-material material point method (MPM) simulation consisting of water, sand and snow with complex obstacles. Our network produces lower error, trains up to 7.0X faster and inferences up to 11.3X faster than [SGGP*20]. It is also, on average, about 3.7X faster compared to Taichi Elements simulation running on the same hardware in our tests.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies --> Neural networks; Physical simulation
dc.subjectComputing methodologies
dc.subjectNeural networks
dc.subjectPhysical simulation
dc.titleLearning Physics with a Hierarchical Graph Networken_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersLearning
dc.description.volume41
dc.description.number8
dc.identifier.doi10.1111/cgf.14643
dc.identifier.pages283-292
dc.identifier.pages10 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 41-Issue 8
    ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2022

Show simple item record