Show simple item record

dc.contributor.authorLi, Yu Dien_US
dc.contributor.authorTang, Minen_US
dc.contributor.authorYang, Yunen_US
dc.contributor.authorHuang, Zien_US
dc.contributor.authorTong, Ruo Fengen_US
dc.contributor.authorYang, Shuang Caien_US
dc.contributor.authorLi, Yaoen_US
dc.contributor.authorManocha, Dineshen_US
dc.contributor.editorChaine, Raphaëlleen_US
dc.contributor.editorKim, Min H.en_US
dc.date.accessioned2022-04-22T06:29:37Z
dc.date.available2022-04-22T06:29:37Z
dc.date.issued2022
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14493
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14493
dc.description.abstractWe present a novel mesh-based learning approach (N-Cloth) for plausible 3D cloth deformation prediction. Our approach is general and can handle cloth or obstacles represented by triangle meshes with arbitrary topologies.We use graph convolution to transform the cloth and object meshes into a latent space to reduce the non-linearity in the mesh space. Our network can predict the target 3D cloth mesh deformation based on the initial state of the cloth mesh template and the target obstacle mesh. Our approach can handle complex cloth meshes with up to 100K triangles and scenes with various objects corresponding to SMPL humans, non-SMPL humans or rigid bodies. In practice, our approach can be used to generate plausible cloth simulation at 30??45 fps on an NVIDIA GeForce RTX 3090 GPU. We highlight its benefits over prior learning-based methods and physicallybased cloth simulators.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies --> Machine learning; Physical simulation
dc.subjectComputing methodologies
dc.subjectMachine learning
dc.subjectPhysical simulation
dc.titleN-Cloth: Predicting 3D Cloth Deformation with Mesh-Based Networksen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersSimulation of Clothes and Crowds
dc.description.volume41
dc.description.number2
dc.identifier.doi10.1111/cgf.14493
dc.identifier.pages547-558
dc.identifier.pages12 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record