Show simple item record

dc.contributor.authorWang, Bolunen_US
dc.contributor.authorFerguson, Zacharyen_US
dc.contributor.authorJiang, Xinen_US
dc.contributor.authorAttene, Marcoen_US
dc.contributor.authorPanozzo, Danieleen_US
dc.contributor.authorSchneider, Teseoen_US
dc.contributor.editorChaine, Raphaëlleen_US
dc.contributor.editorKim, Min H.en_US
dc.date.accessioned2022-04-22T06:28:51Z
dc.date.available2022-04-22T06:28:51Z
dc.date.issued2022
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14479
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14479
dc.description.abstractWe introduce the first exact root parity counter for continuous collision detection (CCD). That is, our algorithm computes the parity (even or odd) of the number of roots of the cubic polynomial arising from a CCD query. We note that the parity is unable to differentiate between zero (no collisions) and the rare case of two roots (collisions). Our method does not have numerical parameters to tune, has a performance comparable to efficient approximate algorithms, and is exact. We test our approach on a large collection of synthetic tests and real simulations, and we demonstrate that it can be easily integrated into existing simulators.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectCCS Concepts: Computing methodologies --> Collision detection; Mathematics of computing --> Mathematical software
dc.subjectComputing methodologies
dc.subjectCollision detection
dc.subjectMathematics of computing
dc.subjectMathematical software
dc.titleFast and Exact Root Parity for Continuous Collision Detectionen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersPhysics Simulation
dc.description.volume41
dc.description.number2
dc.identifier.doi10.1111/cgf.14479
dc.identifier.pages355-363
dc.identifier.pages9 pages


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record