Show simple item record

dc.contributor.authorZhu, Jialinen_US
dc.contributor.authorKelly, Tomen_US
dc.contributor.editorZhang, Fang-Lue and Eisemann, Elmar and Singh, Karanen_US
dc.date.accessioned2021-10-14T11:12:01Z
dc.date.available2021-10-14T11:12:01Z
dc.date.issued2021
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14413
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14413
dc.description.abstractWe introduce Seamless Satellite-image Synthesis (SSS), a novel neural architecture to create scale-and-space continuous satellite textures from cartographic data. While 2D map data is cheap and easily synthesized, accurate satellite imagery is expensive and often unavailable or out of date. Our approach generates seamless textures over arbitrarily large spatial extents which are consistent through scale-space. To overcome tile size limitations in image-to-image translation approaches, SSS learns to remove seams between tiled images in a semantically meaningful manner. Scale-space continuity is achieved by a hierarchy of networks conditioned on style and cartographic data. Our qualitative and quantitative evaluations show that our system improves over the state-of-the-art in several key areas. We show applications to texturing procedurally generation maps and interactive satellite image manipulation.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectComputing methodologies
dc.subjectTexturing
dc.subjectImage processing
dc.titleSeamless Satellite-image Synthesisen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersImage Synthesis and Enhancement
dc.description.volume40
dc.description.number7
dc.identifier.doi10.1111/cgf.14413
dc.identifier.pages193-204


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 40-Issue 7
    Pacific Graphics 2021 - Symposium Proceedings

Show simple item record