Show simple item record

dc.contributor.authorGuo, Jerry Jinfengen_US
dc.contributor.authorEisemann, Elmaren_US
dc.contributor.editorZhang, Fang-Lue and Eisemann, Elmar and Singh, Karanen_US
dc.date.accessioned2021-10-14T11:11:26Z
dc.date.available2021-10-14T11:11:26Z
dc.date.issued2021
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.14405
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14405
dc.description.abstractNumerical integration is fundamental in multiple Monte Carlo rendering problems. We present a sample reweighting scheme, including underlying theory, and analysis of numerical performance for the integration of an unknown one-dimensional function. Our method is simple to implement and builds upon the insight to link the weights to a function reconstruction process during integration. We provide proof that our solution is unbiased in one-dimensional cases and consistent in multi-dimensional cases. We illustrate its effectiveness in several use cases.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectComputing methodologies
dc.subjectRay tracing
dc.subjectKeywords
dc.subjectSampling and Reconstruction
dc.subjectMonte Carlo Integration
dc.subjectSample Reweighting
dc.subjectRendering
dc.titleGeometric Sample Reweighting for Monte Carlo Integrationen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersGlobal Illumination
dc.description.volume40
dc.description.number7
dc.identifier.doi10.1111/cgf.14405
dc.identifier.pages109-119


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • 40-Issue 7
    Pacific Graphics 2021 - Symposium Proceedings

Show simple item record