Show simple item record

dc.contributor.authorLee, Gi Beomen_US
dc.contributor.authorJeong, Moonsooen_US
dc.contributor.authorSeok, Yechanen_US
dc.contributor.authorLee, Sungkilen_US
dc.contributor.editorMitra, Niloy and Viola, Ivanen_US
dc.date.accessioned2021-04-09T08:01:43Z
dc.date.available2021-04-09T08:01:43Z
dc.date.issued2021
dc.identifier.issn1467-8659
dc.identifier.urihttps://doi.org/10.1111/cgf.142649
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf142649
dc.description.abstractThis paper presents a scalable online occlusion culling algorithm, which significantly improves the previous raster occlusion culling using object-level bounding volume hierarchy. Given occluders found with temporal coherence, we find and rasterize coarse groups of potential occludees in the hierarchy. Within the rasterized bounds, per-pixel ray casting tests fine-grained visibilities of every individual occludees. We further propose acceleration techniques including the read-back of counters for tightly-packed multidrawing and occluder filtering. Our solution requires only constant draw calls for batch occlusion tests, while avoiding costly iteration for hierarchy traversal. Our experiments prove our solution outperforms the existing solutions in terms of scalability, culling efficiency, and occlusion-query performance.en_US
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.subjectComputing methodologies
dc.subjectRasterization
dc.subjectVisibility
dc.titleHierarchical Raster Occlusion Cullingen_US
dc.description.seriesinformationComputer Graphics Forum
dc.description.sectionheadersData Structures
dc.description.volume40
dc.description.number2
dc.identifier.doi10.1111/cgf.142649
dc.identifier.pages489-495


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record