Show simple item record

dc.contributor.authorBulani, Pratikkumaren_US
dc.contributor.authorS, Jayachandranen_US
dc.contributor.authorSivaprasad, Sarathen_US
dc.contributor.authorGandhi, Vineeten_US
dc.contributor.editorRonfard, Rémien_US
dc.contributor.editorWu, Hui-Yinen_US
dc.date.accessioned2022-04-20T08:33:42Z
dc.date.available2022-04-20T08:33:42Z
dc.date.issued2022
dc.identifier.isbn978-3-03868-173-1
dc.identifier.issn2411-9733
dc.identifier.urihttps://doi.org/10.2312/wiced.20221049
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/wiced20221049
dc.description.abstractKathakali is one of the major forms of Classical Indian Dance. The dance form is distinguished by the elaborately colourful makeup, costumes and face masks. In this work, we present (a) a framework to analyze the facial expressions of the actors and (b) novel visualization techniques for the same. Due to extensive makeup, costumes and masks, the general face analysis techniques fail on Kathakali videos. We present a dataset with manually annotated Kathakali sequences for four downstream tasks, i.e. face detection, background subtraction, landmark detection and face segmentation. We rely on transfer learning and fine-tune deep learning models and present qualitative and quantitative results for these tasks. Finally, we present a novel application of style-transfer of Kathakali video onto a cartoonized face. The comprehensive framework presented in the paper paves the way for better understanding, analysis, pedagogy and visualization of Kathakali videos.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCCS Concepts: Applied computing --> Performing arts; Human-centered computing --> Visualization
dc.subjectApplied computing
dc.subjectPerforming arts
dc.subjectHuman centered computing
dc.subjectVisualization
dc.titleFramework to Computationally Analyze Kathakali Videosen_US
dc.description.seriesinformationWorkshop on Intelligent Cinematography and Editing
dc.description.sectionheadersIntelligent and Virtual Cinematography
dc.identifier.doi10.2312/wiced.20221049
dc.identifier.pages29-36
dc.identifier.pages8 pages


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record