Show simple item record

dc.contributor.authorRonfard, Rémien_US
dc.contributor.editorWilliam Bares and Vineet Gandhi and Quentin Galvane and Remi Ronfarden_US
dc.date.accessioned2017-04-22T17:13:03Z
dc.date.available2017-04-22T17:13:03Z
dc.date.issued2017
dc.identifier.isbn978-3-03868-031-4
dc.identifier.issn2411-9733
dc.identifier.urihttp://dx.doi.org/10.2312/wiced.20171069
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/wiced20171069
dc.description.abstractIn this position paper, we propose five challenges for advancing the state of the art in intelligent cinematography and editing by taking advantage of the huge quantity of cinematographic data (movies) and metadata (movie scripts) available in digital formats. This suggests a data-driven approach to intelligent cinematography and editing, with at least five scientific bottlenecks that need to be carefully analyzed and resolved.we briefly describe them and suggest some possible avenues for future research in each of those new directions.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.2.10 [Vision and Scene Understanding]
dc.subject
dc.subjectI.3.3 [Computer Graphics]
dc.titleFive Challenges for Intelligent Cinematography and Editingen_US
dc.description.seriesinformationEurographics Workshop on Intelligent Cinematography and Editing
dc.description.sectionheadersStyles and Challenges
dc.identifier.doi10.2312/wiced.20171069
dc.identifier.pages37-41


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record