dc.contributor.author | Dequidt, Jeremie | en_US |
dc.contributor.author | Coevoet, Eulalie | en_US |
dc.contributor.author | Thinès, Laurent | en_US |
dc.contributor.author | Duriez, Christian | en_US |
dc.contributor.editor | Fabrice Jaillet and Florence Zara and Gabriel Zachmann | en_US |
dc.date.accessioned | 2015-11-04T08:42:04Z | |
dc.date.available | 2015-11-04T08:42:04Z | |
dc.date.issued | 2015 | en_US |
dc.identifier.isbn | 978-3-905674-98-9 | en_US |
dc.identifier.uri | http://dx.doi.org/10.2312/vriphys.20151337 | en_US |
dc.description.abstract | Virtual surgical simulators face many computational challenges: they need to provide biophysical accuracy, realistic feed-backs and high-rate responses. Better biophysical accuracy and more realistic feed-backs (be they visual, haptic. . . ) induce more computational footprint. State-of-the-art approaches use high-performance hardware or find an acceptable trade-off between performance and accuracy to deliver interactive yet pedagogically relevant simulators. In this paper, we propose an interactive vascular neurosurgery simulator that provides bi-manual interaction with haptic feedback. The simulator is an original combination of states-of-the-art techniques that allows visual realism, bio-physical realism, complex interactions with the anatomical structures and the instruments and haptic feedback. Training exercises are also proposed to learn and to perform the different steps of intracranial aneurysm surgery (IAS). We assess the performance of our simulator with quantitative performance benchmarks and qualitative assessments of junior and senior clinicians. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.subject | I.3.8 [Computer Graphics] | en_US |
dc.subject | Computer Graphics | en_US |
dc.subject | Applications | en_US |
dc.subject | I.3.7 [Computer Graphics] | en_US |
dc.subject | Computer Graphics/Three Dimensional Graphics and Realism | en_US |
dc.subject | Virtual reality | en_US |
dc.title | Vascular Neurosurgery Simulation with Bimanual Haptic Feedback | en_US |
dc.description.seriesinformation | Workshop on Virtual Reality Interaction and Physical Simulation | en_US |
dc.description.sectionheaders | Interaction & Control | en_US |
dc.identifier.doi | 10.2312/vriphys.20151337 | en_US |
dc.identifier.pages | 81-90 | en_US |