Show simple item record

dc.contributor.authorDieckmann, Alexanderen_US
dc.contributor.authorKlein, Reinharden_US
dc.contributor.editorBeck, Fabian and Dachsbacher, Carsten and Sadlo, Filipen_US
dc.date.accessioned2018-10-18T09:33:39Z
dc.date.available2018-10-18T09:33:39Z
dc.date.issued2018
dc.identifier.isbn978-3-03868-072-7
dc.identifier.urihttps://doi.org/10.2312/vmv.20181256
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/vmv20181256
dc.description.abstractGenerating samples of point clouds and meshes with blue noise characteristics is desirable for many applications in rendering and geometry processing. Working with laser-scanned or lidar point clouds, we usually find region with artifacts called scanlines and scan-edges. These regions are problematic for geometry processing applications, since it is not clear how many points should be selected to define a proper neighborhood. We present a method to construct a hierarchical additive poisson disk sampling from densely sampled point sets, which yield better point neighborhoods. It can be easily implemented using an octree data structure where each octree node contains a grid, called Modifiable Nested Octree [Sch14]. The generation of the sampling amounts to distributing the points over a hierarchy (octree) of resolution levels (grids) in a greedy manner. Propagating the distance constraint r through the hierarchy while drawing samples from the point set leads to a hierarchy of well distributed, random samplings. This ensures that in a disk with radius r, around a point, no other point upwards in the hierarchy is found. The sampling is additive in the sense that the union of points sets up to a certain hierarchy depth D is a poisson disk sampling. This makes it easy to select a resolution where the scan-artifacts have a lower impact on the processing result. The generated sampling can be made sensitive to surface features by a simple preprocessing step, yielding high quality low resolution poisson samplings of point clouds.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subjectPoint
dc.subjectbased models
dc.titleHierarchical Additive Poisson Disk Samplingen_US
dc.description.seriesinformationVision, Modeling and Visualization
dc.description.sectionheadersScanning
dc.identifier.doi10.2312/vmv.20181256
dc.identifier.pages79-87


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • VMV18
    ISBN 978-3-03868-072-7

Show simple item record