dc.contributor.author | Dieckmann, Alexander | en_US |
dc.contributor.author | Klein, Reinhard | en_US |
dc.contributor.editor | Beck, Fabian and Dachsbacher, Carsten and Sadlo, Filip | en_US |
dc.date.accessioned | 2018-10-18T09:33:39Z | |
dc.date.available | 2018-10-18T09:33:39Z | |
dc.date.issued | 2018 | |
dc.identifier.isbn | 978-3-03868-072-7 | |
dc.identifier.uri | https://doi.org/10.2312/vmv.20181256 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.2312/vmv20181256 | |
dc.description.abstract | Generating samples of point clouds and meshes with blue noise characteristics is desirable for many applications in rendering and geometry processing. Working with laser-scanned or lidar point clouds, we usually find region with artifacts called scanlines and scan-edges. These regions are problematic for geometry processing applications, since it is not clear how many points should be selected to define a proper neighborhood. We present a method to construct a hierarchical additive poisson disk sampling from densely sampled point sets, which yield better point neighborhoods. It can be easily implemented using an octree data structure where each octree node contains a grid, called Modifiable Nested Octree [Sch14]. The generation of the sampling amounts to distributing the points over a hierarchy (octree) of resolution levels (grids) in a greedy manner. Propagating the distance constraint r through the hierarchy while drawing samples from the point set leads to a hierarchy of well distributed, random samplings. This ensures that in a disk with radius r, around a point, no other point upwards in the hierarchy is found. The sampling is additive in the sense that the union of points sets up to a certain hierarchy depth D is a poisson disk sampling. This makes it easy to select a resolution where the scan-artifacts have a lower impact on the processing result. The generated sampling can be made sensitive to surface features by a simple preprocessing step, yielding high quality low resolution poisson samplings of point clouds. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.subject | Computing methodologies | |
dc.subject | Point | |
dc.subject | based models | |
dc.title | Hierarchical Additive Poisson Disk Sampling | en_US |
dc.description.seriesinformation | Vision, Modeling and Visualization | |
dc.description.sectionheaders | Scanning | |
dc.identifier.doi | 10.2312/vmv.20181256 | |
dc.identifier.pages | 79-87 | |