dc.contributor.author | Schlegel, Steven | en_US |
dc.contributor.author | Goldau, Mathias | en_US |
dc.contributor.author | Scheuermann, Gerik | en_US |
dc.contributor.editor | David Bommes and Tobias Ritschel and Thomas Schultz | en_US |
dc.date.accessioned | 2015-10-07T05:13:33Z | |
dc.date.available | 2015-10-07T05:13:33Z | |
dc.date.issued | 2015 | en_US |
dc.identifier.isbn | 978-3-905674-95-8 | en_US |
dc.identifier.uri | http://dx.doi.org/10.2312/vmv.20151257 | en_US |
dc.description.abstract | We present a GPU-based approach to visualize samples of normally distributed uncertain, three-dimensional scalar data. Our approach uses a mathematically sound interpolation scheme, i.e., Gaussian process regression. The focus of this work is to demonstrate, that GP-regression can be used for interpolation in practice, despite the high computational costs. The potential of our method is demonstrated by an interactive volume rendering of three-dimensional data, where the gradient estimation is directly computed by the field function without the need of additional sample points of the underlying data. We illustrate our method using three-dimensional data sets of the medical research domain. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.subject | Mathematics of Computing [G.1.0] | en_US |
dc.subject | General | en_US |
dc.subject | Error analysis Mathematics of Computing [G.1.1] | en_US |
dc.subject | Interpolation | en_US |
dc.subject | Interpolation formulas Computer Graphics [I.3.3] | en_US |
dc.subject | Picture/Image Generation | en_US |
dc.subject | Display algorithms | en_US |
dc.title | Interactive GPU-based Visualization of Scalar Data with Gaussian Distributed Uncertainty | en_US |
dc.description.seriesinformation | Vision, Modeling & Visualization | en_US |
dc.description.sectionheaders | Visualization | en_US |
dc.identifier.doi | 10.2312/vmv.20151257 | en_US |
dc.identifier.pages | 49-56 | en_US |