Show simple item record

dc.contributor.authorIporre-Rivas, Arielen_US
dc.contributor.authorScheuermann, Geriken_US
dc.contributor.authorGillmann, Christinaen_US
dc.contributor.editorRenata G. Raidouen_US
dc.contributor.editorBjörn Sommeren_US
dc.contributor.editorTorsten W. Kuhlenen_US
dc.contributor.editorMichael Kroneen_US
dc.contributor.editorThomas Schultzen_US
dc.contributor.editorHsiang-Yun Wuen_US
dc.date.accessioned2022-09-19T11:46:35Z
dc.date.available2022-09-19T11:46:35Z
dc.date.issued2022
dc.identifier.isbn978-3-03868-177-9
dc.identifier.issn2070-5786
dc.identifier.urihttps://doi.org/10.2312/vcbm.20221195
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/vcbm20221195
dc.description.abstractBrain lesions derived from stroke episodes can result in disabilities for a patient. Therefore, the segmentation of brain lesions is an important task in neurology. Recently this task has been mainly tackled by machine learning approaches that demonstrated to be very successful. One of these approaches is Graph Convolutional Networks (GCN), where the input image is interpreted as a graph structure. As usual for neural networks, the interpretability is hard due to their black-box nature. We provide an interactive visualization of the activation inherent in the GCN, which is map from the original dataset. We visualize the activation values of the underlying graph network on top of the input image. We show the usability of our approach by applying it to a GCN that was trained on a real-world dataset.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleUnderstanding Graph Convolutional Networks to detect Brain Lesions from Strokeen_US
dc.description.seriesinformationEurographics Workshop on Visual Computing for Biology and Medicine
dc.description.sectionheadersVisual Analytics, Artificial Intelligence
dc.identifier.doi10.2312/vcbm.20221195
dc.identifier.pages123-127
dc.identifier.pages5 pages


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License