Show simple item record

dc.contributor.authorFajardo, Marcosen_US
dc.contributor.authorPharr, Matten_US
dc.contributor.editorRitschel, Tobiasen_US
dc.contributor.editorWeidlich, Andreaen_US
dc.date.accessioned2023-06-27T06:42:00Z
dc.date.available2023-06-27T06:42:00Z
dc.date.issued2023
dc.identifier.isbn978-3-03868-228-8
dc.identifier.issn1727-3463
dc.identifier.urihttps://doi.org/10.2312/sr.20231141
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/sr20231141
dc.description.abstractProcedural noise functions are widely used in computer graphics as a way to add texture detail to surfaces and volumes. Many noise functions are based on weighted sums that can be expressed in terms of random variables, which makes it possible to compute Monte Carlo estimates of their values at lower cost. Such stochastic noise functions fit naturally into many Monte Carlo estimators already used in rendering. Leveraging the dense image-plane sampling in modern path tracing renderers, we show that stochastic evaluation allows the use of procedural noise at a fraction of its full cost with little additional error.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies -> Rendering; Texturing
dc.subjectComputing methodologies
dc.subjectRendering
dc.subjectTexturing
dc.titleFast Procedural Noise By Monte Carlo Samplingen_US
dc.description.seriesinformationEurographics Symposium on Rendering
dc.description.sectionheadersIndustry Track
dc.identifier.doi10.2312/sr.20231141
dc.identifier.pages131-137
dc.identifier.pages7 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License