Show simple item record

dc.contributor.authorMohadikar, Payalen_US
dc.contributor.authorFan, Chuanmaoen_US
dc.contributor.authorZhao, Chenxien_US
dc.contributor.authorDuan, Yeen_US
dc.contributor.editorChaine, Raphaëlleen_US
dc.contributor.editorDeng, Zhigangen_US
dc.contributor.editorKim, Min H.en_US
dc.date.accessioned2023-10-09T07:42:54Z
dc.date.available2023-10-09T07:42:54Z
dc.date.issued2023
dc.identifier.isbn978-3-03868-234-9
dc.identifier.urihttps://doi.org/10.2312/pg.20231282
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/pg20231282
dc.description.abstractPanorama images are widely used for scene depth estimation as they provide comprehensive scene representation. The existing deep-learning monocular panorama depth estimation networks produce inconsistent, discontinuous, and poor-quality depth maps. To overcome this, we propose a novel multi-scale monocular panorama depth estimation framework. We use a coarseto- fine depth estimation approach, where multi-scale tangent perspective images, projected from 360 images, are given to coarse and fine encoder-decoder networks to produce multi-scale perspective depth maps, that are merged to get low and high-resolution 360 depth maps. The coarse branch extracts holistic features that guide fine branch extracted features using a Multi-Scale Feature Fusion (MSFF) module at the network bottleneck. The performed experiments on the Stanford2D3D benchmark dataset show that our model outperforms the existing methods, producing consistent, smooth, structure-detailed, and accurate depth maps.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies -> Scene understanding
dc.subjectComputing methodologies
dc.subjectScene understanding
dc.titleMulti-scale Monocular Panorama Depth Estimationen_US
dc.description.seriesinformationPacific Graphics Short Papers and Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/pg.20231282
dc.identifier.pages113-114
dc.identifier.pages2 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License