Show simple item record

dc.contributor.authorAbuthawabeh, Alaen_US
dc.contributor.authorBaggag, Abdelkaderen_US
dc.contributor.authorAupetit, Michaelen_US
dc.contributor.editorAgus, Marcoen_US
dc.contributor.editorAigner, Wolfgangen_US
dc.contributor.editorHoellt, Thomasen_US
dc.date.accessioned2022-06-02T15:50:43Z
dc.date.available2022-06-02T15:50:43Z
dc.date.issued2022
dc.identifier.isbn978-3-03868-184-7
dc.identifier.urihttps://doi.org/10.2312/evs.20221091
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/evs20221091
dc.description.abstractInteractive Voronoi Treemaps have been proposed to support arrangement and grouping tasks of data with snippet image representations. They rely on time-consuming manual actions to group data and cannot display more than a hundred images without occlusion. We propose visualizations designed to manage images visibility, evaluate group homogeneity, and shorten grouping task completion time while keeping control. It is supported by an automatic classifier forming an augmented intelligence system to tackle arrangement and grouping tasks at scale. We propose the usage scenario of a clinician using Interactive Voronoi Treemaps to group wearable data based on sleep visual patterns.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleAugmented Intelligence with Interactive Voronoi Treemap for Scalable Grouping: a Usage Scenario with Wearable Dataen_US
dc.description.seriesinformationEuroVis 2022 - Short Papers
dc.description.sectionheadersGraphs and Trees
dc.identifier.doi10.2312/evs.20221091
dc.identifier.pages43-47
dc.identifier.pages5 pages


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License