Augmented Intelligence with Interactive Voronoi Treemap for Scalable Grouping: a Usage Scenario with Wearable Data
Abstract
Interactive Voronoi Treemaps have been proposed to support arrangement and grouping tasks of data with snippet image representations. They rely on time-consuming manual actions to group data and cannot display more than a hundred images without occlusion. We propose visualizations designed to manage images visibility, evaluate group homogeneity, and shorten grouping task completion time while keeping control. It is supported by an automatic classifier forming an augmented intelligence system to tackle arrangement and grouping tasks at scale. We propose the usage scenario of a clinician using Interactive Voronoi Treemaps to group wearable data based on sleep visual patterns.
BibTeX
@inproceedings {10.2312:evs.20221091,
booktitle = {EuroVis 2022 - Short Papers},
editor = {Agus, Marco and Aigner, Wolfgang and Hoellt, Thomas},
title = {{Augmented Intelligence with Interactive Voronoi Treemap for Scalable Grouping: a Usage Scenario with Wearable Data}},
author = {Abuthawabeh, Ala and Baggag, Abdelkader and Aupetit, Michael},
year = {2022},
publisher = {The Eurographics Association},
ISBN = {978-3-03868-184-7},
DOI = {10.2312/evs.20221091}
}
booktitle = {EuroVis 2022 - Short Papers},
editor = {Agus, Marco and Aigner, Wolfgang and Hoellt, Thomas},
title = {{Augmented Intelligence with Interactive Voronoi Treemap for Scalable Grouping: a Usage Scenario with Wearable Data}},
author = {Abuthawabeh, Ala and Baggag, Abdelkader and Aupetit, Michael},
year = {2022},
publisher = {The Eurographics Association},
ISBN = {978-3-03868-184-7},
DOI = {10.2312/evs.20221091}
}