Show simple item record

dc.contributor.authorBot, Daniël M.en_US
dc.contributor.authorPeeters, Jannesen_US
dc.contributor.authorAerts, Janen_US
dc.contributor.editorGillmann, Christinaen_US
dc.contributor.editorKrone, Michaelen_US
dc.contributor.editorLenti, Simoneen_US
dc.date.accessioned2023-06-10T06:31:36Z
dc.date.available2023-06-10T06:31:36Z
dc.date.issued2023
dc.identifier.isbn978-3-03868-220-2
dc.identifier.urihttps://doi.org/10.2312/evp.20231071
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/evp20231071
dc.description.abstractBranches within clusters can represent meaningful subgroups that should be explored. In general, automatically detecting branching structures within clusters requires analysing the distances between data points and a centrality metric, resulting in a complex two-dimensional hierarchy. This poster describes abstractions for this data and formulates requirements for a visualisation, building towards a comprehensive branch-aware cluster exploration interface.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies -> Cluster analysis; Dimensionality reduction and manifold learning
dc.subjectComputing methodologies
dc.subjectCluster analysis
dc.subjectDimensionality reduction and manifold learning
dc.titleThe Challenge of Branch-Aware Data Manifold Explorationen_US
dc.description.seriesinformationEuroVis 2023 - Posters
dc.identifier.doi10.2312/evp.20231071
dc.identifier.pages73-75
dc.identifier.pages3 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License