Show simple item record

dc.contributor.authorCech, Timen_US
dc.contributor.authorSimsek, Furkanen_US
dc.contributor.authorScheibel, Willyen_US
dc.contributor.authorDöllner, Jürgenen_US
dc.contributor.editorGillmann, Christinaen_US
dc.contributor.editorKrone, Michaelen_US
dc.contributor.editorLenti, Simoneen_US
dc.date.accessioned2023-06-10T06:31:26Z
dc.date.available2023-06-10T06:31:26Z
dc.date.issued2023
dc.identifier.isbn978-3-03868-220-2
dc.identifier.urihttps://doi.org/10.2312/evp.20231054
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/evp20231054
dc.description.abstractQuali-quantitative methods provide ways for interrogating Convolutional Neural Networks (CNN). For it, we propose a dashboard using a quali-quantitative method based on quantitative metrics and saliency maps. By those means, a user can discover patterns during the training of a CNN. With this, they can adapt the training hyperparameters of the model, obtaining a CNN that learned patterns desired by the user. Furthermore, they neglect CNNs which learned undesirable patterns. This improves users' agency over the model training process.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies -> Artificial intelligence
dc.subjectComputing methodologies
dc.subjectArtificial intelligence
dc.titleA Dashboard for Interactive Convolutional Neural Network Training And Validation Through Saliency Mapsen_US
dc.description.seriesinformationEuroVis 2023 - Posters
dc.identifier.doi10.2312/evp.20231054
dc.identifier.pages5-7
dc.identifier.pages3 pages


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License