Show simple item record

dc.contributor.authorKán, Peteren_US
dc.contributor.authorDavletaliyev, Maximen_US
dc.contributor.authorKaufmann, Hannesen_US
dc.contributor.editorAdrien Peytavie and Carles Boschen_US
dc.date.accessioned2017-04-22T16:47:00Z
dc.date.available2017-04-22T16:47:00Z
dc.date.issued2017
dc.identifier.issn1017-4656
dc.identifier.urihttp://dx.doi.org/10.2312/egsh.20171006
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egsh20171006
dc.description.abstractThis paper presents a novel method for the discovery of new analytical filters suitable for filtering of noise in Monte Carlo rendering. Our method utilizes genetic programming to evolve the set of analytical filtering expressions with the goal to minimize image error in training scenes. We show that genetic programming is capable of learning new filtering expressions with quality comparable to state of the art noise filters in Monte Carlo rendering. Additionally, the analytical nature of the resulting expressions enables the run-times one order of magnitude faster than compared state of the art methods. Finally, we present a new analytical filter discovered by our method which is suitable for filtering of Monte Carlo noise in diffuse scenes.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.7 [Computer Graphics]
dc.subject3D Graphics and Realism
dc.subjectRaytracing
dc.titleDiscovering New Monte Carlo Noise Filters with Genetic Programmingen_US
dc.description.seriesinformationEG 2017 - Short Papers
dc.description.sectionheadersLighting and Rendering
dc.identifier.doi10.2312/egsh.20171006
dc.identifier.pages25-28


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record