Show simple item record

dc.contributor.authorErra, Ugoen_US
dc.contributor.authorCapece, Nicola Feliceen_US
dc.contributor.authorAgatiello, Robertoen_US
dc.contributor.editorAdrien Peytavie and Carles Boschen_US
dc.date.accessioned2017-04-22T16:46:58Z
dc.date.available2017-04-22T16:46:58Z
dc.date.issued2017
dc.identifier.issn1017-4656
dc.identifier.urihttp://dx.doi.org/10.2312/egsh.20171003
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egsh20171003
dc.description.abstractWe present a feed-forward neural network approach for ambient occlusion baking in real-time rendering. The idea is based on implementing a multi-layer perceptron that allows a general encoding via regression and an efficient decoding via a simple GPU fragment shader. The non-linear nature of multi-layer perceptrons makes them suitable and effective for capturing nonlinearities described by ambient occlusion values. A multi-layer perceptron is also random-accessible, has a compact size, and can be evaluated efficiently on the GPU. We illustrate our approach of screen-space ambient occlusion based on neural network including its quality, size, and run-time speed.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.3 [Picture/Image Generation]
dc.subjectDisplay Algorithms
dc.subjectI.3.7 [Three Dimensional Graphics and Realism]
dc.subjectColor
dc.subjectshading
dc.subjectshadowing
dc.subjectand texture
dc.titleAmbient Occlusion Baking via a Feed-Forward Neural Networken_US
dc.description.seriesinformationEG 2017 - Short Papers
dc.description.sectionheadersLighting and Rendering
dc.identifier.doi10.2312/egsh.20171003
dc.identifier.pages13-16


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record