Show simple item record

dc.contributor.authorCai, Zhilinen_US
dc.contributor.authorZhang, Yangen_US
dc.contributor.authorManzi, Marcoen_US
dc.contributor.authorOztireli, Cengizen_US
dc.contributor.authorGross, Markusen_US
dc.contributor.authorAydin, Tunç Ozanen_US
dc.contributor.editorTheisel, Holger and Wimmer, Michaelen_US
dc.date.accessioned2021-04-09T18:20:28Z
dc.date.available2021-04-09T18:20:28Z
dc.date.issued2021
dc.identifier.isbn978-3-03868-133-5
dc.identifier.issn1017-4656
dc.identifier.urihttps://doi.org/10.2312/egs.20211018
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egs20211018
dc.description.abstractWe present a new method for designing high quality denoisers that are robust to varying noise characteristics of input images. Instead of taking a conventional blind denoising approach or relying on explicit noise parameter estimation networks as well as invertible camera imaging pipeline models, we propose a two-stage model that first processes an input image with a small set of specialized denoisers, and then passes the resulting intermediate denoised images to a kernel predicting network that estimates per-pixel denoising kernels. We demonstrate that our approach achieves robustness to noise parameters at a level that exceeds comparable blind denoisers, while also coming close to state-of-the-art denoising quality for camera sensor noise.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subjectImage processing
dc.titleRobust Image Denoising using Kernel Predicting Networksen_US
dc.description.seriesinformationEurographics 2021 - Short Papers
dc.description.sectionheadersImaging and Video
dc.identifier.doi10.2312/egs.20211018
dc.identifier.pages37-40


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record