Show simple item record

dc.contributor.authorLemonari, Marilenaen_US
dc.contributor.authorCharalambous, Panayiotisen_US
dc.contributor.authorPanayiotou, Andreasen_US
dc.contributor.authorChrysanthou, Yiorgosen_US
dc.contributor.authorPettré, Julienen_US
dc.contributor.editorLiu, Lingjieen_US
dc.contributor.editorAverkiou, Melinosen_US
dc.date.accessioned2024-04-16T15:29:26Z
dc.date.available2024-04-16T15:29:26Z
dc.date.issued2024
dc.identifier.isbn978-3-03868-239-4
dc.identifier.issn1017-4656
dc.identifier.urihttps://doi.org/10.2312/egp.20241039
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egp20241039
dc.description.abstractWe aim to unravel complex agent-environment interactions from trajectories, by explaining agent paths as combinations of predefined basic behaviors. We detect trajectory points signifying environment-driven behavior changes, ultimately disentangling interactions in space and time; our framework can be used for environment synthesis and authoring, shown by our case studies.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Image representations; Neural networks; Motion processing
dc.subjectComputing methodologies → Image representations
dc.subjectNeural networks
dc.subjectMotion processing
dc.titleBehavioral Landmarks: Inferring Interactions from Dataen_US
dc.description.seriesinformationEurographics 2024 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/egp.20241039
dc.identifier.pages2 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License