Show simple item record

dc.contributor.authorBán, Róberten_US
dc.contributor.authorValasek, Gáboren_US
dc.contributor.editorBittner, Jirí and Waldner, Manuelaen_US
dc.date.accessioned2021-04-09T19:18:48Z
dc.date.available2021-04-09T19:18:48Z
dc.date.issued2021
dc.identifier.isbn978-3-03868-134-2
dc.identifier.issn1017-4656
dc.identifier.urihttps://doi.org/10.2312/egp.20211031
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egp20211031
dc.description.abstractThis work proposes the use of barycentric interpolation on enclosing simplices of sample points to infer a reconstructed function from discrete data. In particular, we compare the results of trilinear and tetrahedral interpolation over regular 3D grids of second order spherical harmonics (SH) light probes. In general, tetrahedral interpolation only requires four data samples per query in contrast to the 8 samples necessary for trilinear interpolation, at the expense of a more expensive weight computation. Our tetrahedral implementation subdivides the cubical cells into six tetrahedra and uses the barycentric coordinates of the query position as weights to blend the probe data. We show that barycentric coordinates can be calculated efficiently in shaders for our particular tetrahedral decomposition of the cube, resulting only in simple arithmetic and conditional move operations.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subjectRendering
dc.subjectShape modeling
dc.subjectMathematics of computing
dc.subjectContinuous functions
dc.titleTetrahedral Interpolation on Regular Gridsen_US
dc.description.seriesinformationEurographics 2021 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/egp.20211031
dc.identifier.pages13-14


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record