Show simple item record

dc.contributor.authorLejemble, Thibaulten_US
dc.contributor.authorMura, Claudioen_US
dc.contributor.authorBarthe, Loïcen_US
dc.contributor.authorMellado, Nicolasen_US
dc.contributor.editorFusiello, Andrea and Bimber, Oliveren_US
dc.date.accessioned2019-05-05T17:48:02Z
dc.date.available2019-05-05T17:48:02Z
dc.date.issued2019
dc.identifier.issn1017-4656
dc.identifier.urihttps://doi.org/10.2312/egp.20191047
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egp20191047
dc.description.abstractSurfaces sampled with point clouds often exhibit multi-scale properties due to the high variation between their feature size. Traditional shape analysis techniques usually rely on geometric descriptors able to characterize a point and its close neighborhood at multiple scale using smoothing kernels of varying radii. We propose to add a spatial regularization to these point-wise descriptors in two different ways. The first groups similar points in regions that are structured in a hierarchical graph. The graph is then simplified and processed to extract pertinent regions. The second performs a spatial gradient descent in order to highlight stable parts of the surface. We show two experiments focusing on planar and anisotropic feature areas respectively.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleMulti-Scale Point Cloud Analysisen_US
dc.description.seriesinformationEurographics 2019 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/egp.20191047
dc.identifier.pages17-18


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record