Show simple item record

dc.contributor.authorRuan, Lingyanen_US
dc.contributor.authorChen, Binen_US
dc.contributor.authorLam, Miu Lingen_US
dc.contributor.editorJain, Eakta and Kosinka, Jiríen_US
dc.date.accessioned2018-04-14T18:29:55Z
dc.date.available2018-04-14T18:29:55Z
dc.date.issued2018
dc.identifier.issn1017-4656
dc.identifier.urihttp://dx.doi.org/10.2312/egp.20181017
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egp20181017
dc.description.abstractWe present a deep learning-based method to synthesize a 4D light field from a single 2D RGB image. We consider the light field synthesis problem equivalent to image super-resolution, and solve it by using the improved Wasserstein Generative Adversarial Network with gradient penalty (WGAN-GP). Experimental results demonstrate that our algorithm can predict complex occlusions and relative depths in challenging scenes. The light fields synthesized by our method has much higher signal-to-noise ratio and structural similarity than the state-of-the-art approach.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subjectMachine learning
dc.subjectComputational photography
dc.titleLight Field Synthesis from a Single Image using Improved Wasserstein Generative Adversarial Networken_US
dc.description.seriesinformationEG 2018 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/egp.20181017
dc.identifier.pages19-20


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record