Show simple item record

dc.contributor.authorChen, Mei-Yunen_US
dc.contributor.authorYang, Ci-Syuanen_US
dc.contributor.authorOuhyoung, Mingen_US
dc.contributor.editorJain, Eakta and Kosinka, Jiríen_US
dc.date.accessioned2018-04-14T18:29:51Z
dc.date.available2018-04-14T18:29:51Z
dc.date.issued2018
dc.identifier.issn1017-4656
dc.identifier.urihttp://dx.doi.org/10.2312/egp.20181008
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egp20181008
dc.description.abstractFor novice painters, color mixing is a necessary skill which takes many years to learn. To get the skill easily, we design a system, a smart palette, to help them learn quickly. Our system is based on physical watercolor pigments, and we use a spectrometer to measure the transmittance and reflectance of watercolor pigments and collect a color mixing dataset. Moreover, we use deep neural network (DNN) to train a color mixing model. After that, using the model to predict a large amount of color mixing data creates a lookup table for color matching. In the smart palette, users can select a target color from an input image; then, the smart palette will find the nearest color, which is a matched color, and show a recipe where two pigments and their respective quantities can be mixed to get that color.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectApplied computing
dc.subjectFine arts
dc.subjectFine arts
dc.subjectComputing methodologies
dc.subjectNeural networks
dc.titleA Smart Palette for Helping Novice Painters to Mix Physical Watercolor Pigmentsen_US
dc.description.seriesinformationEG 2018 - Posters
dc.description.sectionheadersPosters
dc.identifier.doi10.2312/egp.20181008
dc.identifier.pages1-2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record