Show simple item record

dc.contributor.authorHajij, Mustafaen_US
dc.contributor.authorZhang, Yunhaoen_US
dc.contributor.authorLiu, Haowenen_US
dc.contributor.authorRosen, Paulen_US
dc.contributor.editorRitsos, Panagiotis D. and Xu, Kaien_US
dc.date.accessioned2020-09-10T06:27:51Z
dc.date.available2020-09-10T06:27:51Z
dc.date.issued2020
dc.identifier.isbn978-3-03868-122-9
dc.identifier.urihttps://doi.org/10.2312/cgvc.20201153
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/cgvc20201153
dc.description.abstractWe use persistent homology along with the eigenfunctions of the Laplacian to study similarity amongst geometric and combinatorial objects. Our method relies on studying the lower-star filtration induced by the eigenfunctions of the Laplacian. This gives us a shape descriptor that inherits the rich information encoded in the eigenfunctions of the Laplacian. Moreover, the similarity between these descriptors can be easily computed using tools that are readily available in Topological Data Analysis. We provide experiments to illustrate the effectiveness of the proposed method.en_US
dc.publisherThe Eurographics Associationen_US
dc.titlePersistent Homology and the Discrete Laplace Operator For Mesh Similarityen_US
dc.description.seriesinformationComputer Graphics and Visual Computing (CGVC)
dc.description.sectionheadersGraphics
dc.identifier.doi10.2312/cgvc.20201153
dc.identifier.pages67-70


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record