Show simple item record

dc.contributor.authorCazals, Fredericen_US
dc.contributor.authorGiesen, Joachimen_US
dc.contributor.authorPauly, Marken_US
dc.contributor.authorZomorodian, Afraen_US
dc.contributor.editorMarc Alexa and Szymon Rusinkiewicz and Mark Pauly and Matthias Zwickeren_US
dc.date.accessioned2014-01-29T16:31:42Z
dc.date.available2014-01-29T16:31:42Z
dc.date.issued2005en_US
dc.identifier.isbn3-905673-20-7en_US
dc.identifier.issn1811-7813en_US
dc.identifier.urihttp://dx.doi.org/10.2312/SPBG/SPBG05/055-061en_US
dc.description.abstractWe define a new filtration of the Delaunay triangulation of a finite set of points in Rd, similar to the alpha shape filtration. The new filtration is parameterized by a local scale parameter instead of the global scale parameter in alpha shapes. Since our approach shares many properties with the alpha shape filtration and the local scale parameter conforms to the local geometry we call it conformal alpha shape filtration. The local scale parameter is motivated from applications and previous algorithms in surface reconstruction. We show how conformal alpha shapes can be used for surface reconstruction of non-uniformly sampled surfaces, which is not possible with alpha shapes.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and object representationsen_US
dc.titleConformal Alpha Shapesen_US
dc.description.seriesinformationEurographics Symposium on Point-Based Graphics (2005)en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record