dc.contributor.author | Griffith, E. J. | en_US |
dc.contributor.author | Koutek, M. | en_US |
dc.contributor.author | Post, Frits H. | en_US |
dc.contributor.editor | Alexander Belyaev and Michael Garland | en_US |
dc.date.accessioned | 2014-01-29T09:43:16Z | |
dc.date.available | 2014-01-29T09:43:16Z | |
dc.date.issued | 2007 | en_US |
dc.identifier.isbn | 978-3-905673-46-3 | en_US |
dc.identifier.issn | 1727-8384 | en_US |
dc.identifier.uri | http://dx.doi.org/10.2312/SGP/SGP07/263-272 | en_US |
dc.description.abstract | We present two methods for lossy compression of normal vectors through quantization using base polyhedra. The first revisits subdivision-based quantization. The second uses fixed-precision barycentric coordinates. For both, we provide fast (de)compression algorithms and a rigorous upper bound on compression error. We discuss the effects of base polyhedra on the error bound and suggest polyhedra derived from spherical coverings. Finally, we present compression and decompression results, and we compare our methods to others from the literature. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.subject | Categories and Subject Descriptors (according to ACM CCS): I.3.0 [Computer Graphics]: General I.3.6 [Computer Graphics]: Methodology and Techniques E.4 [Data]: Coding and Information Theory | en_US |
dc.title | Fast Normal Vector Compression with Bounded Error | en_US |
dc.description.seriesinformation | Geometry Processing | en_US |