Show simple item record

dc.contributor.authorGriffith, E. J.en_US
dc.contributor.authorKoutek, M.en_US
dc.contributor.authorPost, Frits H.en_US
dc.contributor.editorAlexander Belyaev and Michael Garlanden_US
dc.date.accessioned2014-01-29T09:43:16Z
dc.date.available2014-01-29T09:43:16Z
dc.date.issued2007en_US
dc.identifier.isbn978-3-905673-46-3en_US
dc.identifier.issn1727-8384en_US
dc.identifier.urihttp://dx.doi.org/10.2312/SGP/SGP07/263-272en_US
dc.description.abstractWe present two methods for lossy compression of normal vectors through quantization using base polyhedra. The first revisits subdivision-based quantization. The second uses fixed-precision barycentric coordinates. For both, we provide fast (de)compression algorithms and a rigorous upper bound on compression error. We discuss the effects of base polyhedra on the error bound and suggest polyhedra derived from spherical coverings. Finally, we present compression and decompression results, and we compare our methods to others from the literature.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): I.3.0 [Computer Graphics]: General I.3.6 [Computer Graphics]: Methodology and Techniques E.4 [Data]: Coding and Information Theoryen_US
dc.titleFast Normal Vector Compression with Bounded Erroren_US
dc.description.seriesinformationGeometry Processingen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record