Show simple item record

dc.contributor.authorWardetzky, Maxen_US
dc.contributor.authorMathur, Saurabhen_US
dc.contributor.authorKaelberer, Felixen_US
dc.contributor.authorGrinspun, Eitanen_US
dc.contributor.editorAlexander Belyaev and Michael Garlanden_US
dc.date.accessioned2014-01-29T09:43:05Z
dc.date.available2014-01-29T09:43:05Z
dc.date.issued2007en_US
dc.identifier.isbn978-3-905673-46-3en_US
dc.identifier.issn1727-8384en_US
dc.identifier.urihttp://dx.doi.org/10.2312/SGP/SGP07/033-037en_US
dc.description.abstractDiscrete Laplace operators are ubiquitous in applications spanning geometric modeling to simulation. For robustness and efficiency, many applications require discrete operators that retain key structural properties inherent to the continuous setting. Building on the smooth setting, we present a set of natural properties for discrete Laplace operators for triangular surface meshes. We prove an important theoretical limitation: discrete Laplacians cannot satisfy all natural properties; retroactively, this explains the diversity of existing discrete Laplace operators. Finally, we present a family of operators that includes and extends well-known and widely-used operators.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleDiscrete Laplace operators: No free lunchen_US
dc.description.seriesinformationGeometry Processingen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record