Show simple item record

dc.contributor.authorBarnat, Alfreden_US
dc.contributor.authorPollard, Nancy S.en_US
dc.contributor.editorJehee Lee and Paul Kryen_US
dc.date.accessioned2014-01-29T08:00:43Z
dc.date.available2014-01-29T08:00:43Z
dc.date.issued2012en_US
dc.identifier.isbn978-3-905674-37-8en_US
dc.identifier.issn1727-5288en_US
dc.identifier.urihttp://dx.doi.org/10.2312/SCA/SCA12/077-086en_US
dc.description.abstractSmoke is one of the core phenomena which fluid simulation techniques in computer graphics have attempted to capture. It is both well understood mathematically and important in lending realism to computer generated effects. In an attempt to overcome the diffusion inherent to Eulerian grid-based simulators, a technique has recently been developed which represents velocity using a sparse set of vortex filaments. This has the advantage of providing an easily understandable and controllable model for fluid velocity, but is computationally expensive because each filament affects the fluid velocity over an unbounded region of the simulation space. We present an alternative to existing techniques which merge adjacent filament rings, instead allowing filaments to form arbitrary structures, and we develop a new set of reconnection criteria to take advantage of this filament graph. To complement this technique, we also introduce a method for smoke surface tracking and rendering designed to minimize the number of sample points without introducing excessive diffusion or blurring. Though this representation lends itself to straightforward real-time rendering, we also present a method which renders the thin sheets and curls of smoke as diffuse volumes using any GPU capable of supporting geometry shaders.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.7 [Computer Graphics]en_US
dc.subjectThree Dimensional Graphics and Realismen_US
dc.subjectAnimationen_US
dc.subjectI.3.5 [Computer Graphics]en_US
dc.subjectComputational Geometry and Object Modelingen_US
dc.subjectPhysically based modelingen_US
dc.titleSmoke Sheets for Graph-Structured Vortex Filamentsen_US
dc.description.seriesinformationEurographics/ ACM SIGGRAPH Symposium on Computer Animationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record