Show simple item record

dc.contributor.authorKaji, Shizuoen_US
dc.contributor.authorHirose, Sampeien_US
dc.contributor.authorSakata, Shigehiroen_US
dc.contributor.authorMizoguchi, Yoshihiroen_US
dc.contributor.authorAnjyo, Kenen_US
dc.contributor.editorJehee Lee and Paul Kryen_US
dc.date.accessioned2014-01-29T08:00:43Z
dc.date.available2014-01-29T08:00:43Z
dc.date.issued2012en_US
dc.identifier.isbn978-3-905674-37-8en_US
dc.identifier.issn1727-5288en_US
dc.identifier.urihttp://dx.doi.org/10.2312/SCA/SCA12/071-076en_US
dc.description.abstractThis paper gives a simple mathematical framework for 2D shape interpolation methods that preserve rigidity. An interpolation technique in this framework works for given the source and target 2D shapes, which are compatibly triangulated. Focusing on the local affine maps between the corresponding triangles, we describe a global transformation as a piecewise affine map. Several existing rigid shape interpolation techniques are discussed and mathematically analyzed through this framework. This gives us not only a useful comprehensive understanding of existing approaches, but also new algorithms and a few improvements of previous approaches.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.3 [Computer Graphics]en_US
dc.subjectPicture/Image Generationen_US
dc.subjectDisplay algorithmsen_US
dc.titleMathematical Analysis on Affine Maps for 2D Shape Interpolationen_US
dc.description.seriesinformationEurographics/ ACM SIGGRAPH Symposium on Computer Animationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record