Show simple item record

dc.contributor.authorChristie, Marcen_US
dc.contributor.authorNormand, Jean-Marieen_US
dc.contributor.authorOlivier, Patricken_US
dc.contributor.editorJehee Lee and Paul Kryen_US
dc.date.accessioned2014-01-29T08:00:42Z
dc.date.available2014-01-29T08:00:42Z
dc.date.issued2012en_US
dc.identifier.isbn978-3-905674-37-8en_US
dc.identifier.issn1727-5288en_US
dc.identifier.urihttp://dx.doi.org/10.2312/SCA/SCA12/059-064en_US
dc.description.abstractMaintaining the visibility of target objects is a fundamental problem in automatic camera control for 3D graphics applications. Practical real-time camera control algorithms generally only incorporate mechanisms for the evaluation of the visibility of target objects from a single viewpoint, and idealize the geometric complexity of target objects. Drawing on work in soft shadow generation, we perform low resolution projections, from target objects to rapidly compute their visibility for a sample of locations around the current camera position. This computation is extended to aggregate visibility in a temporal window to improve camera stability in the face of partial and sudden onset occlusion. To capture the full spatial extent of target objects we use a stochastic approximation of their surface area. Our implementation is the first practical occlusion-free real-time camera control framework for multiple target objects. The result is a robust component that can be integrated to any virtual camera control system that requires the precise computation of visibility for multiple targets.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.7 [Computer Graphics]en_US
dc.subjectThree Dimensional Graphics and Realismen_US
dc.subjectAnimationen_US
dc.titleOcclusion-free Camera Control for Multiple Targetsen_US
dc.description.seriesinformationEurographics/ ACM SIGGRAPH Symposium on Computer Animationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record