dc.contributor.author | Diziol, R. | en_US |
dc.contributor.author | Bender, J. | en_US |
dc.contributor.author | Bayer, D. | en_US |
dc.contributor.editor | A. Bargteil and M. van de Panne | en_US |
dc.date.accessioned | 2013-10-31T10:29:07Z | |
dc.date.available | 2013-10-31T10:29:07Z | |
dc.date.issued | 2011 | en_US |
dc.identifier.isbn | 978-1-4503-0923-3 | en_US |
dc.identifier.issn | 1727-5288 | en_US |
dc.identifier.uri | http://dx.doi.org/10.2312/SCA/SCA11/237-246 | en_US |
dc.description.abstract | We introduce an efficient technique for robustly simulating incompressible objects with thousands of elements in real-time. Instead of considering a tetrahedral model, commonly used to simulate volumetric bodies, we simply use their surfaces. Not requiring hundreds or even thousands of elements in the interior of the object enables us to simulate more elements on the surface, resulting in high quality deformations at low computation costs. Theelasticity of the objects is robustly simulated with a geometrically motivated shape matching approach which is extended by a fast summation technique for arbitrary triangle meshes suitable for an efficient parallel computation on the GPU. Moreover, we present an oscillation-free and collision-aware volume constraint, purely based on the surface of the incompressible body. The novel heuristic we propose in our approach enables us to conserve the volume, both globally and locally. Our volume constraint is not limited to the shape matching method and can be used with any method simulating the elasticity of an object. We present several examples which demonstrate high quality volume conserving deformations and compare the run-times of our CPU implementation, as well as our GPU implementation with similar methods. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.subject | Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometryand Object Modeling-Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics andRealism-Animation | en_US |
dc.title | Robust Real-Time Deformation of Incompressible Surface Meshes | en_US |
dc.description.seriesinformation | Eurographics/ ACM SIGGRAPH Symposium on Computer Animation | en_US |