Show simple item record

dc.contributor.authorPark, Sang Ilen_US
dc.contributor.authorKim, Myoung Junen_US
dc.contributor.editorD. Terzopoulos and V. Zordan and K. Anjyo and P. Faloutsosen_US
dc.date.accessioned2014-01-29T07:12:32Z
dc.date.available2014-01-29T07:12:32Z
dc.date.issued2005en_US
dc.identifier.isbn1-59593-198-8en_US
dc.identifier.issn1727-5288en_US
dc.identifier.urihttp://dx.doi.org/10.2312/SCA/SCA05/261-270en_US
dc.description.abstractIn this paper, we present a method for visual simulation of gaseous phenomena based on the vortex method. This method uses a localized vortex flow as a basic building block and combines those blocks to describe a whole flow field. As a result, we achieve computational efficiency by concentrating only on a localized vorticity region while generating dynamic swirling fluid flows. Based on the Lagrangian framework, we resolve various boundary conditions. By exploiting the panel method, we satisfy the no-through boundary condition in a Lagrangian way. A simple and effective way of handling the no-slip boundary condition is also presented. In treating the no-slip boundary condition, we allow a user to control the roughness of the boundary surface, which further improves visual realism.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and RealismAnimationen_US
dc.titleVortex Fluid for Gaseous Phenomenaen_US
dc.description.seriesinformationSymposium on Computer Animationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record