Particle-based Viscoelastic Fluid Simulation
Abstract
We present a new particle-based method for viscoelastic fluid simulation.We achieve realistic small-scale behavior of substances such as paint or mud as they splash on moving objects. Incompressibility and particle anti-clustering are enforced with a double density relaxation procedure which updates particle positions according to two opposing pressure terms. From this process surface tension effects emerge, enabling drop and filament formation. Elastic and non-linear plastic effects are obtained by adding springs with varying rest length between particles. We also extend the technique to handle interaction between fluid and dynamic objects. Various simulation scenarios are presented including rain drops, fountains, clay manipulation, and floating objects. The method is robust and stable, and can animate splashing behavior at interactive framerates.
BibTeX
@inproceedings {10.2312:SCA:SCA05:219-228,
booktitle = {Symposium on Computer Animation},
editor = {D. Terzopoulos and V. Zordan and K. Anjyo and P. Faloutsos},
title = {{Particle-based Viscoelastic Fluid Simulation}},
author = {Clavet, Simon and Beaudoin, Philippe and Poulin, Pierre},
year = {2005},
publisher = {The Eurographics Association},
ISSN = {1727-5288},
ISBN = {1-59593-198-8},
DOI = {10.2312/SCA/SCA05/219-228}
}
booktitle = {Symposium on Computer Animation},
editor = {D. Terzopoulos and V. Zordan and K. Anjyo and P. Faloutsos},
title = {{Particle-based Viscoelastic Fluid Simulation}},
author = {Clavet, Simon and Beaudoin, Philippe and Poulin, Pierre},
year = {2005},
publisher = {The Eurographics Association},
ISSN = {1727-5288},
ISBN = {1-59593-198-8},
DOI = {10.2312/SCA/SCA05/219-228}
}