dc.contributor.author | Choe, Byoungwon | en_US |
dc.contributor.author | Choi, Min Gyu | en_US |
dc.contributor.author | Ko, Hyeong-Seok | en_US |
dc.contributor.editor | D. Terzopoulos and V. Zordan and K. Anjyo and P. Faloutsos | en_US |
dc.date.accessioned | 2014-01-29T07:12:27Z | |
dc.date.available | 2014-01-29T07:12:27Z | |
dc.date.issued | 2005 | en_US |
dc.identifier.isbn | 1-59593-198-8 | en_US |
dc.identifier.issn | 1727-5288 | en_US |
dc.identifier.uri | http://dx.doi.org/10.2312/SCA/SCA05/153-160 | en_US |
dc.description.abstract | We present a new framework for simulating dynamic movements of complex hairstyles. The proposed framework, which treats hair as a collection of wisps, includes new approaches to simulating dynamic wisp movements and handling wisp-body collisions and wisp-wisp interactions. For the simulation of wisps, we introduce a new hair dynamics model, a hybrid of the rigid multi-body serial chain and mass-spring models, to formulate the simulation system using an implicit integration method. Consequently, the simulator can impose collision/contact constraints systematically, allowing it to handle wisp-body collisions efficiently without the need for backtracking or subtimestepping. In addition, the simulator handles wisp-wisp collisions based on impulses while taking into account viscous damping and cohesive forces. Experimental results show that the proposed technique can stably simulate hair with intricate geometries while robustly handling wisp-body collisions and wisp-wisp interactions. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.subject | Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling?Physically Based Modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism-Animation | en_US |
dc.title | Simulating Complex Hair with Robust Collision Handling | en_US |
dc.description.seriesinformation | Symposium on Computer Animation | en_US |