Show simple item record

dc.contributor.authorGolembiovský, Tomá¹en_US
dc.contributor.authorDuriez, Christianen_US
dc.contributor.editorJan Bender and Arjan Kuijper and Dieter W. Fellner and Eric Guerinen_US
dc.date.accessioned2013-11-08T10:54:18Z
dc.date.available2013-11-08T10:54:18Z
dc.date.issued2012en_US
dc.identifier.isbn978-3-905673-96-8en_US
dc.identifier.urihttp://dx.doi.org/10.2312/PE/vriphys/vriphys12/107-116en_US
dc.description.abstractThere is a strong need, in surgical simulations, for physically based deformable model of thin or hollow structures. The use of shell theory allows to have a well-founded formulation resulting from continuum mechanics of thin objects. However, this formulation asks for second order spatial derivatives so requires the use of complex elements. In this paper, we present a new way of building the interpolation: First, we use the trianular cubic Bézier shell to allow for a good continuity inside and between the elements and second, we build a kinematic mapping to reduce the degrees of freedom of the element from 10 control points with 3 Degrees of Freedom (en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.5 [Computer Graphics]en_US
dc.subjectComputational Geometry and Object Modelingen_US
dc.subjectPhysically based modelingen_US
dc.titleBézier Shell Finite Element for Interactive Surgical Simulationen_US
dc.description.seriesinformationWorkshop on Virtual Reality Interaction and Physical Simulationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record