Show simple item record

dc.contributor.authorLai, Yu-Chien_US
dc.contributor.authorFan, Shao Huaen_US
dc.contributor.authorChenney, Stephenen_US
dc.contributor.authorDyer, Charcleen_US
dc.contributor.editorJan Kautz and Sumanta Pattanaiken_US
dc.date.accessioned2014-01-27T15:09:34Z
dc.date.available2014-01-27T15:09:34Z
dc.date.issued2007en_US
dc.identifier.isbn978-3-905673-52-4en_US
dc.identifier.issn1727-3463en_US
dc.identifier.urihttp://dx.doi.org/10.2312/EGWR/EGSR07/287-295en_US
dc.description.abstractThis work presents a novel global illumination algorithm which concentrates computation on important light transport paths and automatically adjusts energy distributed area for each light transport path. We adapt statistical framework of Population Monte Carlo into global illumination to improve rendering efficiency. Information collected in previous iterations is used to guide subsequent iterations by adapting the kernel function to approximate the target distribution without introducing bias into the final result. Based on this framework, our algorithm automatically adapts the amount of energy redistribution at different pixels and the area over which energy is redistributed. Our results show that the efficiency can be improved by exploring the correlated information among light transport paths.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Raytracingen_US
dc.titlePhotorealistic Image Rendering with Population Monte Carlo Energy Redistributionen_US
dc.description.seriesinformationRendering Techniquesen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record