dc.contributor.author | Ruf, Erik | en_US |
dc.contributor.editor | Carsten Dachsbacher and William Mark and Jacopo Pantaleoni | en_US |
dc.date.accessioned | 2016-02-18T11:01:49Z | |
dc.date.available | 2016-02-18T11:01:49Z | |
dc.date.issued | 2011 | en_US |
dc.identifier.isbn | 978-1-4503-0896-0 | en_US |
dc.identifier.issn | 2079-8687 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1145/2018323.2018346 | en_US |
dc.description.abstract | We describe a simple mechanism for bounding the portion of the plane lying between a quadratic Beizer curve segment and its offset curve at distance d. Instead of comprising one or more partial bounding polygons, our representation consists of only a single approximate offset curve segment, also in quadratic Bezier form. Evaluated on a corpus of real-world curves, this technique avoids 68-99% of antialias-distance queries and 41-96% of brushparameter queries. A proof of correctness is provided. | en_US |
dc.publisher | ACM | en_US |
dc.subject | I.3.5 [Computer Graphics] | en_US |
dc.subject | Computational Geometryand Object Modeling Boundary representations | en_US |
dc.subject | offset curve | en_US |
dc.subject | bounding technique | en_US |
dc.subject | acceleration | en_US |
dc.title | An Inexpensive Bounding Representation for Offsets of Quadratic Curves | en_US |
dc.description.seriesinformation | Eurographics/ ACM SIGGRAPH Symposium on High Performance Graphics | en_US |
dc.description.sectionheaders | Geometric Computations | en_US |
dc.identifier.doi | 10.1145/2018323.2018346 | en_US |
dc.identifier.pages | 143-150 | en_US |