Show simple item record

dc.contributor.authorSchlömer, Thomasen_US
dc.contributor.authorHeck, Danielen_US
dc.contributor.authorDeussen, Oliveren_US
dc.contributor.editorCarsten Dachsbacher and William Mark and Jacopo Pantaleonien_US
dc.date.accessioned2016-02-18T11:01:49Z
dc.date.available2016-02-18T11:01:49Z
dc.date.issued2011en_US
dc.identifier.isbn978-1-4503-0896-0en_US
dc.identifier.issn2079-8687en_US
dc.identifier.urihttp://dx.doi.org/10.1145/2018323.2018345en_US
dc.description.abstractEfficient sampling often relies on irregular point sets that uniformly cover the sample space. We present a flexible and simple optimization strategy for such point sets. It is based on the idea of increasing the mutual distances by successively moving each point to the farthestpoint, i.e., the location that has the maximum distance from the rest of the point set. We present two iterative algorithms based on this strategy. The first is our main algorithm which distributes points in the plane. Our experimental results show that the resulting distributions have almost optimal blue noise properties and are highly suitable for image plane sampling. The second is a variant of the main algorithm that partitions any point set into equally sizedsubsets, each with large mutual distances; the resulting partitionings yield improved results in more general integration problems such as those occurring in physically based renderingen_US
dc.publisherACMen_US
dc.subjectI.3.3 [Computer Graphics]en_US
dc.subjectPicture/ImageGeneration Antialiasingen_US
dc.subjectI.4.1 [Image Processing and ComputerVision]en_US
dc.subjectDigitization and Image Capture Samplingen_US
dc.subjectsamplingen_US
dc.subjectanti-aliasingen_US
dc.subjectblue noiseen_US
dc.subjectPoissonen_US
dc.subjectdisken_US
dc.subjectmaximized minimum distanceen_US
dc.subjectDelaunay triangulationsen_US
dc.subjectnumericall integrationen_US
dc.subjecttrajectory splittingen_US
dc.titleFarthest-Point Optimized Point Sets with Maximized Minimum Distanceen_US
dc.description.seriesinformationEurographics/ ACM SIGGRAPH Symposium on High Performance Graphicsen_US
dc.description.sectionheadersGeometric Computationsen_US
dc.identifier.doi10.1145/2018323.2018345en_US
dc.identifier.pages135-142en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record